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Abstract

Based on the `average stress in the matrix' concept of Mori and Tanaka (Mori, T., Tanaka, K., 1973. Average
stress in matrix and average elastic energy of materials with mis®tting inclusion. Acta Metall. 21, 571±580) a
micromechanical model is presented for the prediction of the elastic ®elds in coated inclusion composites with
imperfect interfaces. The solutions of the e�ective elastic moduli for this kind of composite are also obtained. In

two kinds of composites with coated particulates and ®bers, respectively, the interface imperfections are taken to the
assumption that the interface displacement discontinues are linearly related to interface tractions like a spring layer
of vanishing thickness. The resulting e�ective shear modulus for each material and the stress ®elds in the composite

are presented under a transverse shear loading situation. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is well-known that the mechanical behavior of composite materials is signi®cantly a�ected by the
nature of the bond between the constituents. To reinforce the bond between the inclusion and matrix, a
material which is a layer of coating or interphase, whose thickness depends on the chemistry and
processing conditions of the inclusions, is introduced. Many investigators have studied the mechanical
properties of this kind of material in the conditions of a perfect interface, such as Walpole (1978),
Benveniste et al. (1989), Nemat-Nasser and Hori (1993), Nemat-Nasser et al. (1993). Due to the
presence of interphase materials, the studies show that local ®elds in a coated inclusion are generally not
uniform. Hence, for imperfect interfaces, many authors are limited to the studies of two-phase materials,
e.g., Benveniste (1984, 1985), Achenbach and Zhu (1989) and Qu (1993a). On the basis of the composite
sphere assemblage and the generalized self-consistent scheme models, Hashin (1991) investigated the
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e�ect of imperfect interfaces on the mechanical properties of the composite by representing the interface
imperfection as a thin compliant interphase with much lower elastic moduli.

The presented work is mainly concerned with the predictions of stress ®elds and the elastic properties
for the three-phase materials with imperfect interface, based on the `average stress in matrix' concept of
Mori and Tanaka (1973). The results are derived from a variant of Benveniste's (1987) re-examination
of Mori±Tanaka's method. This approach represents the local ®elds in a coated inclusion by the ®elds
found when the coated inclusion embedded in an unbounded matrix medium subjects to the average
matrix stresses (or strains) at in®nity, so that the local ®elds in the coating and the inclusion, and in the
matrix can be evaluated by using the solution of a single coated inclusion in an in®nite matrix and
considering the interaction between the inclusions through the average matrix stresses. The interfacial
imperfections of allowing displacement discontinuity across the interface between the interphase and
matrix have been introduced in the procedure. The imperfections can a�ect the overall elastic properties
of composite material in two ways, the local ®elds on each inhomogeneity and the strain due to the
interfacial imperfections. In Sections 2 and 3, we describe the procedure for evaluation of local ®elds
and overall (e�ective) properties of composites consisting of three anisotropy phases of arbitrary
geometry. In Section 4, we show the results of the composite with coated spherical and cylindrical
inclusions with imperfect interface.

2. Stress and strain ®elds in three-phase composites with imperfect interface

Consider a three-phase composite material which consists of a matrix phase m with modulus Lm
ijkl,

inhomogeneity phase f with modulus L f
ijkl and third phase g with modulus L g

ijkl which represents the
coating material that encapsulates each inclusion of the f matrix. The elastic constitutive equations of
the phases are given in forms

srij � Lr
ijkle

r
kl �1�

erij �Mr
ijkls

r
kl �2�

where srij and erij are stress and strain tensors, r � f, g, m, Lr
ijkl and Mr

ijkl � �Lr
ijkl�ÿ1 are the sti�ness and

compliance tensors.
De®ne the following boundary conditions applied to a large composite material body of volume V

and bounding surface S:

ui�S� � e0ijx j, �3�

si�S� � s0ijnj, �4�

where ui�S � and si�S � denote the displacement and traction vectors on S, e0ij and s0ij are the applied
constant stress and strain ®elds. ni denotes the outward normal to S and xi are coordinate system.

The interface between the coating and matrix is assumed to be imperfect. As Qu (1993b) assumed, a
spring layer of vanishing thickness will be used to characterize the imperfect bonding. At the interface,
the interfacial traction is still continuous, but the displacement discontinuity is allowed. The compliance
of the interface (spring layer) is related to the traction and the jump of the displacement at the interface.
The interface conditions can be expressed in the following forms:
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Dsijnj �
�
sij�O�� ÿ sij�Oÿ�

�
nj � 0, �5�

Dui �
�
ui�O�� ÿ ui�Oÿ�

�
� nijsjknk, �6�

where ui�O�� and ui�Oÿ� are the values of ui�x� when x approaches the interface from matrix and
interphase, respectively, so are sij�O�� and sij�Oÿ�. The tensor Zij � 0 corresponds to a perfect interface,
while Zij 4 1 represents complete interface debonding. If the constitutive characterization of the
interface can be described by a and b which represent the compliance in normal and tangential
directions of the interface, respectively. A special form of Zij may be written by

Zij � adij � �bÿ a�ninj, �7�

where dij is the Kronecker symbol. It can be easily shown that a and b represent the compliance in the
tangential and normal directions of the interface, respectively, i.e.,

Dui�dik ÿ nink � � asijnj�dik ÿ nink �, �7a�

Duinj � bsijninj: �7b�

When b � 0, this constitutive characterization of the interface allows relative sliding between the two
surface, but no separation. The free-sliding case can be achieved by setting a 4 1 with b � 0.
Therefore, solution to the case of small a with b � 0 provide approximations complementary to the free-
sliding interfaces. The interface between the inclusion and interphase is assumed to be perfect. The
tractions and displacements at this interface are all continuous.

Consider the composite subjected to the boundary conditions (3) and present the solution for the
strain ®elds in every phase symbolically as

erij�x� � Ar
ijkl�x�e0kl, r � f, g, m �8�

where Ar
ijkl�x� is a fourth-order tensor whose volume averages are usually referred to as mechanical

strain concentration factors. Determination of the tensor Ar
ijkl�x� is approximately obtained in this paper

by ®elds in a single coated inclusion which is embedded in an unbounded matrix medium and subjected
to remotely applied strain emij which are equal to the yet unknown average strain in the matrix.

Now consider a local matrix volume V 0 with surface S 0 in the V which surrounds a single coated
inclusion. Its boundary conditions are

ui�S 0 � � emij x j �9�

where emij is the unknown average matrix strain. The interface conditions are the same as (5) and (6).
Thus, the solution in each part of the reinforcement phases can be written as

erij�x� � T r
ijkl�x�emkl, r � f, g �10�

where T r
ijkl�x� relates to the single inclusion in an in®nite matrix and has phase volume averages T r

ijkl.
To determine emij we relate the overall uniform strain �eij to the local average strain erij and the average

imperfect interface strain etij and have

�eij �
X
r

crerij � etij � e0ij, r � f, g, m �11a�
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etij �
1

2VO

�
O

ÿ
Duinj � Dujni

�
dO, �11b�

where cr are the phase volume fractions, cf � cg � cm � 1, O is the outer surface of the interface. It is
seen that the integral in (11) are somewhat di�cult to evaluate for arbitrary interface. But they can be
calculated for the spherical and cylindrical geometry in the following example. For slightly weakened
interfaces, Qu (1993b) introduced a tensor Hijkl to evaluate the etij approximately by using the interface
conditions (6) and replacing the stress distribution on O by its volume average s�ij within O.

etij � cfgHijkls�kl, cfg � cf � cg �12�

where Hijkl is a fourth-order tensor de®ned by

Hijkl � 1

4VO

�
O

ÿ
Ziknjnl � Zjkninl � Zilnjnk � Zjlnink

�
dO: �13�

It is noticed that Hijkl depends on the interface (springer-layer) property and the geometry of the
inclusion. s�ij is related to the emij . We ®nd that this approximation cannot be introduced to the case of
the large compliance of the interface, and it give a reasonable estimation only for the very small
compliance of the interface. However, having a close investigation to (11b), one can assume that etij have
the forms

etij � cfgBijklemkl, �14�

where Bijkl are the strain concentration factors. Then (10) is averaged over the volume of each phase,
and the results are introduced into (11). With eqn (14) we can ®nd the unknown average matrix strain
emij as

emij �
"X

r

crT
r
ijkl � cfgBijkl

#ÿ1
e0kl, r � f, g, m: �15�

Since we only consider the state of strain in the matrix in a small volume adjacent to the coated
inclusion, hence it is reasonable that

T m
ijkl � Iijkl � 1

2

ÿ
dikdjl � dildjk

�
: �16�

The approximate strain ®eld for each phase erij can be yielded by substitution of (15) into (10).
A similar procedure can also be applied for the stress boundary conditions (4). In place of (8), we can

write the solution for stress ®elds in each phase.

srij�x� � Dr
ijkl�x�s0kl, r � f, g, m �17�

where Dr
ijkl�x� have volume phase average Dijkl which are referred to as the mechanical stress

concentration factors. In the volume V 0 with surface S 0 which embedded a single coated inclusion, the
solution can be assumed to be the form

srij�x� �W r
ijkl�x�smkl, r � f, g: �18�

The tensor W r
ijkl�x� is related to the counterpart in (10) by

W r
ijkl�x� � Lr

ijpqT
r
pqst�x�Mm

stkl, r � f, g, m �19�
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and according to the same reason in (16) we have

W r
ijkl � Iijkl � 1

2

ÿ
dikdjl � dildjk

�
: �20�

To determine smij we write the overall uniform stress �sij in term of the local average stress srij

�sij �
X
r

crsrijsrij � s0ij, r � f, g, m �21�

and use (19) to get the result

smij �
"X

r

crW
r
ijkl

#ÿ1
s0kl: �22�

Introducing (22) into (18), one obtain the approximate stress ®elds in each phase srij�x�.

3. E�ective mechanical properties

De®ne the elastic constitutive relations of the composite as

�sij � Lijkl�ekl, �23a�

�eij �Mijkl �skl, �24�
where �sij and �eij denote representative volume averages stress and strain tensors, Lijkl and Mijkl are the
sti�ness and compliance tensors of the composite.

To determine Lijkl, note the solution of strain ®elds in each phase and (1), (11), (15) under the
boundary conditions (3), we have

�sij �
X
r

crL
r
ijpqT

r
pqkle

m
kl �

 X
r

crL
r
ijpqT

r
pqkl

! X
r

crT
r
klsn � cfgBklsn

!ÿ1
e0sn: �23b�

From (23a) and (23b) one gets

Lijkl �
 X

r

crL
r
ijpqT

r
pqsn

! X
r

crT
r
snkl � cfgBsnkl

!ÿ1
: �25�

Following the similar procedures under boundary conditions (4) and using (2), (11), (19), (21) and
(22) one can ®nd

�sij �
X
r

crsrij �
X
r

crW
r
ijkls

m
kl � s0ij

�eij �
X
r

crerij � etij:

The average imperfect interface strains etij can be assumed to be
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etij � cfgCijklsmkl:

The tensor Cijkl is related to the counterparts in (14) by

BijpqM
m
pqkl � Cijkl: �26�

Then we have

�eij �
X
r

crM
r
ijpqW

r
pqkls

m
kl � cfgCijklsmkl, r � f, g, m:

From (24) we get

Mijkl �
 X

r

crM
r
ijpqW

r
pqkl � cfgCijkl

! X
r

crW
r
ijkl

!ÿ1
, r � f, g, m: �27�

Recall that Mijkl in (27) in Lijkl in (25) are derived under di�erent boundary conditions. The
consistency of the methods which require the relations

Mijkl � Lÿ1ijkl, �28�

should be satis®ed
Rearrange (27) to get

Mijpq

 X
r

crW
r
pqkl

!
�
 X

r

crM
r
ijstW

r
stkl � cfgCijkl

!
, r � f, g, m: �29�

Using (19), (26) and (29) leads to

Mijpq

 X
r

crL
r
pqstT

r
stkl

!
�
 X

r

crT
r
ijkl � cfgBijkl

!
, r � f, g, m: �30�

From (25) and (30) it can see that (28) is satis®ed.
It is noted that the above determination of the e�ective mechanical properties is based on the

assumption that the average imperfect interface strain etij can be explicitly expressed by emij or smij .
However, due to the fact that the displacement discontinuities at the interfaces are allowed, the strain etij
is generally implicitly involved by emij or smij for the arbitrary inclusion geometry, so that dual procedures
described above may not always yield the physically expected result that Mijkl is the inverse of Lijkl. A
detail argument refers to the case of a laminated composite with debonding (Benveniste, 1984).

4. Examples

4.1. Stress ®elds and e�ective transverse modulus for the composite with coated spherical inclusions

We now consider the problem that the composite reinforced by coated spherical particles is subjected
to traction boundary conditions. The three distinct phases are assumed to be isotropic. First, consider
the auxiliary problem of a single coated sphere embedded in the in®nite matrix subjected to the remote
pure shear tractions. The state of the remote tractions is
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sxxjr 4 1 � s0, syyjr41 � ÿs0, szzjr41 � 0: �31�

Following Christensen and Lo (1979), the displacement ®elds have the form

ur � Ur sin y cos 2f

uy � Uy sin y cos y cos 2f

uf � Uf sin y sin 2f �32�

where �r, y, f� are the usual spherical polar coordinates and Ur,Uy and Uf are functions of r only. For
each of the three phases, Ur,Uy and Uf have the following form, in the inclusion phase,

U f
r � A1rÿ 6vf

1ÿ 2vf
A2r

3

U f
f � A1rÿ 7ÿ 4vf

1ÿ 2vf
A2r

3

U f
f � ÿU f

f

9>>>>>>>=>>>>>>>;
, 0ErEa �33�

in the interphase,

U g
r � B1rÿ 6vg

1ÿ 2vg
B2r

3 � 3

r4
B3 � 5ÿ 4vg

1ÿ 2vg

1

r2
B4

U g
y � B1rÿ 7ÿ 4vg

1ÿ 2vg
B2r

3 ÿ 2

r4
B3 � 2

r2
B4

U g
f � ÿU g

y

9>>>>>>>=>>>>>>>;
aErEb �34�

in the matrix phase,

U m
r � D1r� 3

r4
D3 � 5ÿ 4vm

1ÿ 2vm

1

r2
D4

U m
y � D1rÿ 2

r4
D3 � 2

r2
D4

U m
f � ÿU m

y

9>>>>>>=>>>>>>;
rrb �35�

where vf,vg,vm are the Poisson's ratio of each phase, respectively, and a and b are outer radii of the
inclusion and interphase. The A's, B's and D's are the usual constants to be determined from the stress
and displacement conditions at the two interface. The interface conditions are
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U f
r �a� � U g

r �a�
U f

y �a� � U g
y �a�

s f
rr�a� � s g

rr�a�
s f
ry�a� � s g

ry�a�
U m

r
�b� ÿU g

r
�b� � asmrr�b�

U m
y �b� ÿU g

y
�b� � bsmry�b�

smrr�b� � s g
rr
�b�

smry�b� � s g
ry
�b�

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;

�36�

where a and b are de®ned in (7). Introducing �A1 � A1, �A2 � a2A2, �B1 � B1, �B2 � b2B2, �B3 � B3=b
5,

�B4 � B4=b
3, �D3 � D3=b

5, �D4 � D4=b
3, c � a=b and the interface imperfect parameters a1 � 2amm=b,

b1 � 2bmm=b, and substituting (33)±(35) into (36), we can write the interface conditions in the matrix
form as follows

E4�4

2666664
�B1

�B2

�B3

�B4

3777775 � F4�2

"
�A1

�A2

#
�37�

where

E4�4 �

26666666664

1 ÿ6vgc2=
ÿ
1ÿ 2vg

�
3=c5

ÿ
5ÿ 4vg

�
=
hÿ
1ÿ 2vg

�
c3
i

1 ÿÿ7ÿ 4vg
�
c2=
ÿ
1ÿ 2vg

� ÿ2=c5 2=c3

1 3vgc
2=
ÿ
1ÿ 2vg

� ÿ12=c5 ÿ2�5ÿ v�=
hÿ
1ÿ 2vg

�
c3
i

1 ÿÿ7� 2vg
�
c2=
ÿ
1ÿ 2vg

�
8=c5 2

ÿ
1� vg

�
=
hÿ
1ÿ 2vg

�
c3
i

37777777775
and

F4�2 �

2666664
1 ÿ6vf=

ÿ
1ÿ 2vf

�
1 ÿÿ7ÿ 4vf

�
=
ÿ
1ÿ 2vf

�
mf=mg 3vfmf=

�ÿ
1ÿ 2vf

�
mg
�

mf=mg ÿ
ÿ
7� 2vf

�
mf=
�ÿ
1ÿ 2vf

�
mg
�

3777775

G2�4 �

2666664
�B1

�B2

�B3

�B4

3777775 � P2�2

"
�D3

�D4

#
�N2�1D1 �38�
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where

G2�4 �
"
1 ÿÿ7� 2vg

�
=
ÿ
1ÿ 2vg

�
8 2

ÿ
1� vg

�
=
ÿ
1ÿ 2vg

�
ÿ1 ÿ

7ÿ 4vg
�
=
ÿ
1ÿ 2vg

�
2 ÿ2

#
,

P2�2 �
"
8mm=mg 2�1� vm�mm=

��1ÿ 2vm�mg
�

8b1 � 2 ÿ 2�1� vm�b1=�1ÿ 2vm� ÿ 2

#
, N �

"
mm=mg

b1 ÿ 1

#
:

K2�4 �

2666664
�B1

�B2

�B3

�B4

3777775 � L2�2

"
�D3

�D4

#
�39�

where

K2�4 �
24 0 2

ÿ
7� 5vg

�
=
ÿ
1ÿ 2vg

� ÿ40
a1 ÿ b1 6vg

ÿ
b1 ÿ 1

�ÿ ÿ7ÿ 4vg
��a1 ÿ 1�=ÿ1ÿ 2vg

�
5ÿ 3b1 ÿ 2a1

ÿ24=ÿ1ÿ 2vg
�ÿ

5ÿ 4vg
�ÿ
1ÿ b1

�
=
ÿ
1ÿ 2vg

�� 2�a1 ÿ 1�

35
and

L2�2 �

2664
ÿ40mm=mg ÿ24mm=

��1ÿ 2vm�mg
�

3�4a1 � 1�ÿ1ÿ b1
� �

2a1�5ÿ vm � � 5ÿ 4vm
�ÿ
1ÿ b1

�
=�1ÿ 2vm �

�2ÿ4b1 � 1
��1ÿ a1 � �2��1� vm�b1=�1ÿ 2vm� ÿ 1

��1ÿ a1�

3775:
Using the condition (31), when r 4 1,

2mmD1 � s0, D1 � s0=2mm: �40�

Combined with (37)±(40), the constants can be determined as follows,"
�A1

�A2

#
� Rÿ12�2N2�1D1 �

"
a1

a2

#
s0=2mm �41�

2666664
�B1

�B2

�B3

�B4

3777775 � E4�4F4�2

"
�A1

�A2

#
�

2666664
b1

b2

b3

b4

3777775 s0=2mm �42�
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"
�D3

�D4

#
� Lÿ12�2K2�4E ÿ14�4F4�2

"
�A1

�A2

#
�
"
d1

d2

#
s0=2mm �43�

where

R2�2 �
ÿ
G2�4 ÿ P2�2Lÿ12�2K2�4

�
E ÿ14�4F4�2: �44�

All the constants are dependent upon the remote stress s0. We now estimate the average stresses in each
phase. This can be implemented from the integral as follows,

�slij �
3

4p
ÿ
R3

2 ÿ R3
1

� �p
0

sin y dy
�2p
0

df
�R2

R1

slijr
2 dr, l � f, g, m �45�

where

R1 � 0, R2 � a, for l � f

R1 � a, R2 � b, for l � g

R1 � b, R2 � 1, for l � m:

After some length mathematics, we found the stress components in Cartesian coordinates for each phase

�s f
xx �

mf
mm

"
a1 ÿ 21

5
ÿ
1ÿ 2vf

�a2#s0 �Wfs0

�s g
xx �

mg
mm

"
b1 ÿ 21

5
ÿ
1ÿ 2vg

�b2 1ÿ c5

1ÿ c3

#
�Wgs0

�smxx � s0

�slyy � ÿ �slxx, l � f, g, m: �46�

Other stress components are equal to zero.
Note that

sxx � s0: �47�
From (22) we obtain

smxx �
ÿ
cm � cfWf � cgWg

�ÿ1s0: �48�

Let smxx take the place of the traction s0 in the auxiliary problem, then the approximate stress ®elds in
the coated spherical composite can be given by the same procedure as above.

Consider the average imperfect strain etij and use the integral (11) we ®nd that

etxx � cfg�2DUr � 3DUy�=5b � cfgWts0, cfg � cf � cg
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etyy � ÿertxx, others � 0: �49�

where DUi � U m
i ÿ U g

i �i � r, y� are the displacement jumps at r � b. The e�ective transverse shear
modulus mT then follows from

1=mr �
ÿ
cm=mm � cfWf=mf � cgWg=mg � 2cfgWt

�ÿ
cm � cfWf � cgWg

�ÿ1
: �50�

4.2. Stress ®eld and e�ective transverse shear modulus for a coated cylinder model

Let's consider the composite reinforced by coated cylindrical ®bers of a circular cross-section. We
assume that ®ber are aligned and distributed in the matrix in a statistically homogeneous manner and
each of its three distinct phases is isotropic.

Consider ®rst the auxiliary problem of a single coated ®ber embedded in the in®nite matrix. The
composite is subjected to traction boundary conditions. The state of the remote traction is

sxxjr41 � s0, syyjr41 � ÿs0, szzjr41 � 0: �51�
We can use the existing solution found by Christensen and Lo (1979). The displacement ®elds in each

of three phases are

ulr � U l
r cos 2y

uly � U l
y sin 2y

)
l � f, g, m: �52�

in the inclusion phase,

u f
r �

bs0
4mf

"
a1
ÿ
Zf ÿ 3

�� r

b

�3

�d1 r
b

#
cos 2y

u f
y �

bs0
4mf

"
a1
ÿ
Zf � 3

�� r

b

�3

�d1 r
b

#
sin 2y

9>>>>>>=>>>>>>;
0ErEa �53�

in the coating phase,

u g
r �

bs0
4mg

"
a2
ÿ
Zg ÿ 3

�� r

b

�3

�d2 r
b
� c2

ÿ
Zg � 1

�b
r
� b2

�
b

r

�3
#

cos 2y

u g
y �

bs0
4mg

"
a2
ÿ
Zg � 3

�� r

b

�3

ÿd2 r
b
ÿ c2

ÿ
Zg ÿ 1

�b
r
� b2

�
b

r

�3
#

sin 2y

9>>>>>>=>>>>>>;
aErEb �54�

in the matrix phase,

umr �
bs0
4mm

"
2
r

b
� a3

ÿ
Zm � 1

�b
r
� c3

�
b

r

�3
#

cos 2y

umy �
bs0
4mm

"
ÿ 2

r

b
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ÿ
Zm ÿ 1

�b
r
� c3

�
b

r

�3
#
sin 2y

9>>>>>>=>>>>>>;
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and all

ulz � 0, l � f, g, m

where a and b are the inner and outer radii of the coating, respectively, a1, d1, a2, d2, c2, b2, a3 and c3 are
unknown constants to be determined, ml are phase shear moduli, r, y, z are the usual cylindrical
coordinates and

Zl � 1� 2m23l =K
23
l , l � f, g, m

where m23l is the transverse shear modulus and K 23
l is the plane strain bulk modulus (see Christensen and

Lo, 1986).
The interface conditions have the same forms as (36) and can also be represented by the matrix forms

as follows. From the ®rst four equations in (36), one can give

E4�4

2666664
a2

b2

c2

d2

3777775� F4�2

"
a1

d1

#
� 0 �56�

where

E4�4 �

26666666666664

ÿ1 1=c6 1=c4 0

0 3=c4 4=c2 ÿ1
mf
ÿ
Zg ÿ 3

� ÿ
mf � mgZf

�
=c6 �mf

ÿ
Zg � 1

�
�mf ÿ mg�=c2

ÿmg
ÿ
Zf ÿ 3

� �mg
ÿ
Zf � 1

�
�=c4

mf
ÿ
Zg � 3

� ÿ
mf � mgZf

�
=c6 ÿ�mf

ÿ
Zg ÿ 1

� ÿ�mf ÿ mg�=c2

ÿmg
ÿ
Zf � 3

� ÿmg
ÿ
Zf ÿ 1

�
�=c4

37777777777775

F4�2 �

2666664
1 0

0 1

0 0

0 0

3777775, where c � a=b:

From the last four equations in (36), one can get

K2�2

"
a3

c3

#
� Q2�4

2666664
a2

b2

c2

d2

3777775, �57�
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2N2�2 �U2�2

�
a3
c3

�
� V2�4

2664
a2
b2
c2
d2

3775 � 0, �58�

where

K2�2 �
"ÿ1 ÿ1
1� Zm

ÿ
a1 ÿ b1

�� 3a1 � b1 ÿ 12a1b1 1� 2
ÿ
a1 � b1

�ÿ 12a1b1

#
,

Q2�4 �

266664
1 ÿ1 ÿ1 0

mm� ÿ 3
ÿ
a1 ÿ b1

� vm
mg

ÿ
1ÿ a1 ÿ b1

�
mm�Zg

ÿ
a1 ÿ b1

� mm
mg

ÿ
a1 ÿ b1

�
�Zg

ÿ
1ÿ a1 ÿ b1

�
�=mg �1ÿ a1 ÿ b1��=mg

377775,

N2�1 �
"

1

1ÿ 2b1

#
, U2�2 �

"
2 3

Zm ÿ 1ÿ 4b1 ÿ
ÿ
1� 6b1

� #,

V2�4 �
"

6 ÿ3 ÿ2 ÿ1
mm
ÿ
Zg � 3

�
=mg mm=mg mm

ÿ
1ÿ Zg

�
=mg ÿmm=mg

#

where a1�mma=b, b1�mmb=b are the interface imperfect parameters. The constants can be determined"
a1

d1

#
� 2Rÿ12�2N2�1, �59a�

2666664
a2

b2

c2

d2

3777775 � ÿE ÿ14�4F4�2

"
a1

d1

#
, �59b�

"
a3

d3

#
� K ÿ12�2Q2�4

2666664
a2

b2

c2

d2

3777775 �59c�

where

R2�2 � 2
ÿ
V2�4 �U2�2K ÿ12�2Q2�4

�
E ÿ14�4F4�2:

We now estimate the average stresses in each phase as previously done. After lengthy mathematics, we
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found, in Cartesian coordinates, in each phase,

�s f
xx � 1

2

ÿ
d1 ÿ 3a1c

2
�
s0 �Wfs0, �60a�

�s g
xx �

1

2

�
d2 ÿ 3a2

1ÿ c4

1ÿ c2

�
s0 �Wgs0, �60b�

�smxx � s0, �60c�

�slyy � ÿ �slxx, l � f, g, m, others � 0: �60d�

Using (22), note that

sxx � s0 �61�
to obtain

smxx �
ÿ
cm � cfWf � cgWg

�ÿ1s0: �62�
Substitute 2s0 �2smxx into the auxiliary problem, then the approximate stress ®eld in coated ®ber

composition can be given by the same procedure as above.
Consider the average imperfect interface strain �etij and use the integral (11b), we ®nd that

�etxx � cfg�DUr ÿ DUy�=2b � cfgWts0, cfg � cf � cg

�etyy � ÿ�etxx, others � 0 �63�

where DUi � U m
i ÿ U g

i �i � r, y� are the displacement jumps at r � b. The e�ective transverse shear
modulus mT then follows form

1

2mT
�
�

cm
2mm
� cf

2mf
Wf � cg

2mg
Wg � cfgWt

�ÿ
cm � cfWf � cgWg

�ÿ1
: �64�

4.3. Numerical results and discussion

In order to illustrate the e�ect of imperfect interface on the coated inclusion composite, we consider
the composite consisting of the SiC inclusions, phase f, a carbon coating, phase g, embedded in
Titanium aluminate matrix, phase m for the spherical and cylindrical models, respectively. The phase
properties are (from Benveniste et al. 1989),

mf � 172:0 Gpa, vf � 0:253, cf � 0:4,

mg � 14:34 Gpa, vg � 0:2, cg � 0:01,

mm � 37:10 Gpa, vm � 0:3, cm � 0:59:

a/b =0.9918 for the sphere particle, a/b =0.9877 for the ®ber.
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Figures 1 and 2 show the e�ect of bonding on e�ective shear modulus for the spherical particle and
cylindrical ®ber cases, respectively. In one set of plots a1 � 0 which denotes the perfect normal bond
and imperfect shear bond. In other set of plots a1 � b1=5 which presents the case of imperfect normal
and shear bond. Because the curves for other ratio a1=b1 have a similar trend. Therefore, we give only
the typical one. It is clearly seen that the feature of normal bond has a strong and similar e�ect on
degradation of shear modulus for the two kinds of composites. It can be seen that the mT=mm for a1 � 0
and b1 � 0:01 are 1.66 and 1.55. The numerical results obtained on the approach presented by
Christensen and Lo (1979) for perfect bonding cases are 1.67 and 1.56. Our results agree with those.

Fig. 2. Variation of e�ective shear modulus with shear bond parameter for cylindrical model.

Fig. 1. Variation of e�ective shear modulus with shear bond parameter for spherical model.
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Figures 3 and 4 show the stress distributions along the interface between the interphase and the
matrix for the coated particulate and ®ber reinforced composites with di�erent imperfect
parameters, respectively. In the coated particulate composite, as the imperfect parameters a1 and b1
increase, the amplitude of the stresses srr and syy increases, but sry decreases at the interface. This
implies that the variation of the normal displacement jump becomes large and that variation of the
tangential displacement is lower. Since the normal interface displacement jump waves along the
interface, a negative jump larger than the interphase thickness means that particles and matrix
interpenetrate which is not permissible for physical reasons. It is to be expected that normal
imperfect parameters could be di�erent in tension and compression to overcome this paradox.
However, in the coated cylinder composite, the amplitude of the srr and sry all decrease as the
imperfect parameters increase, although that of sry increases. This means the variations of the
normal and tangential interface displacement jump decrease with the increase of the imperfect
parameters and the present model may give a reasonable estimation for the coated ®ber composites
with imperfect interface.

Figures 5 and 6 show the e�ect of the interphase properties on the e�ective shear modulus for the two
cases on some imperfect conditions, respectively. It is seen that the two models have a similar e�ect on
the shear modulus of the composites and only the very small interphase properties have a strong
in¯uence on the behavior of the composite. This feature is similar to the characteristic of the composites
determined with perfect bonding (Wu and Dong, 1995).

Fig. 3. Stress distributions along the interface between coating and matrix for the shear loading in XY-plane.
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Fig. 4. Stress distributions along the interface between coating and matrix for the shear loading in XY-plane.

Fig. 5. Variation of e�ective shear modulus with the interface shear modulus for spherical model.
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