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Abstract

Based on the ‘average stress in the matrix’ concept of Mori and Tanaka (Mori, T., Tanaka, K., 1973. Average
stress in matrix and average elastic energy of materials with misfitting inclusion. Acta Metall. 21, 571-580) a
micromechanical model is presented for the prediction of the elastic fields in coated inclusion composites with
imperfect interfaces. The solutions of the effective elastic moduli for this kind of composite are also obtained. In
two kinds of composites with coated particulates and fibers, respectively, the interface imperfections are taken to the
assumption that the interface displacement discontinues are linearly related to interface tractions like a spring layer
of vanishing thickness. The resulting effective shear modulus for each material and the stress fields in the composite
are presented under a transverse shear loading situation. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

It is well-known that the mechanical behavior of composite materials is significantly affected by the
nature of the bond between the constituents. To reinforce the bond between the inclusion and matrix, a
material which is a layer of coating or interphase, whose thickness depends on the chemistry and
processing conditions of the inclusions, is introduced. Many investigators have studied the mechanical
properties of this kind of material in the conditions of a perfect interface, such as Walpole (1978),
Benveniste et al. (1989), Nemat-Nasser and Hori (1993), Nemat-Nasser et al. (1993). Due to the
presence of interphase materials, the studies show that local fields in a coated inclusion are generally not
uniform. Hence, for imperfect interfaces, many authors are limited to the studies of two-phase materials,
e.g., Benveniste (1984, 1985), Achenbach and Zhu (1989) and Qu (1993a). On the basis of the composite
sphere assemblage and the generalized self-consistent scheme models, Hashin (1991) investigated the
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effect of imperfect interfaces on the mechanical properties of the composite by representing the interface
imperfection as a thin compliant interphase with much lower elastic moduli.

The presented work is mainly concerned with the predictions of stress fields and the elastic properties
for the three-phase materials with imperfect interface, based on the ‘average stress in matrix’ concept of
Mori and Tanaka (1973). The results are derived from a variant of Benveniste’s (1987) re-examination
of Mori—Tanaka’s method. This approach represents the local fields in a coated inclusion by the fields
found when the coated inclusion embedded in an unbounded matrix medium subjects to the average
matrix stresses (or strains) at infinity, so that the local fields in the coating and the inclusion, and in the
matrix can be evaluated by using the solution of a single coated inclusion in an infinite matrix and
considering the interaction between the inclusions through the average matrix stresses. The interfacial
imperfections of allowing displacement discontinuity across the interface between the interphase and
matrix have been introduced in the procedure. The imperfections can affect the overall elastic properties
of composite material in two ways, the local fields on each inhomogeneity and the strain due to the
interfacial imperfections. In Sections 2 and 3, we describe the procedure for evaluation of local fields
and overall (effective) properties of composites consisting of three anisotropy phases of arbitrary
geometry. In Section 4, we show the results of the composite with coated spherical and cylindrical
inclusions with imperfect interface.

2. Stress and strain fields in three-phase composites with imperfect interface

Consider a three-phase composite mdtel‘ldl which consists of a matrix phase m with modulus L,
inhomogeneity phase f with modulus L ikl and third phase g with modulus L} 4 which represents the
coating material that encapsulates each 1nclu51on of the f matrix. The elastic constltutlve equations of
the phases are given in forms

0y = Ligeh (1

& = Moy 2)

where ¢}, and ¢ are stress and strain tensors, r = £, g, m, Ljy, and M7, = (Lukl) are the stiffness and
compliance tensors
Define the following boundary conditions applied to a large composite material body of volume V

and bounding surface S:

u(S) = & X ?3)

a/(S) = o’ s 4)

where u;(S) and 6,(S) denote the displacement and traction vectors on S, &’ i and o-,/ are the applied
constant stress and strain fields. n; denotes the outward normal to S and x; are coordinate system.

The interface between the coating and matrix is assumed to be imperfect. As Qu (1993b) assumed, a
spring layer of vanishing thickness will be used to characterize the imperfect bonding. At the interface,
the interfacial traction is still continuous, but the displacement discontinuity is allowed. The compliance
of the interface (spring layer) is related to the traction and the jump of the displacement at the interface.

The interface conditions can be expressed in the following forms:
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Acjnj = [0(Q") — 6,(Q7)]n; = 0, 5)

Au; = [ui(Q+) - u,-(Q_)] = Njj0ji Nk, ©)

where 1,(Q") and u;(Q") are the values of u;(x) when x approaches the interface from matrix and
interphase, respectively, so are g;(Q") and ¢;(Q"). The tensor n; = 0 corresponds to a perfect interface,
while 7; — oo represents complete interface debonding. If the constitutive characterization of the
interface can be described by « and f which represent the compliance in normal and tangential
directions of the interface, respectively. A special form of n; may be written by

i = ad; + (B — )nin, (7

where ¢;; is the Kronecker symbol. It can be easily shown that « and f represent the compliance in the
tangential and normal directions of the interface, respectively, i.e.,

Aui(Sy — ning) = aoyn(dx — ning), (7a)

Au,-nj = ﬂO’,‘jI’ll'l’lj. (7b)

When f =0, this constitutive characterization of the interface allows relative sliding between the two
surface, but no separation. The free-sliding case can be achieved by setting o — oo with f=0.
Therefore, solution to the case of small & with § = 0 provide approximations complementary to the free-
sliding interfaces. The interface between the inclusion and interphase is assumed to be perfect. The
tractions and displacements at this interface are all continuous.

Consider the composite subjected to the boundary conditions (3) and present the solution for the
strain fields in every phase symbolically as

G(X) = Ay (), r=1fg,m 8)

where Aj(x) is a fourth-order tensor whose volume averages are usually referred to as mechanical
strain concentration factors. Determination of the tensor Ay, (x) is approximately obtained in this paper
by fields in a single coated inclusion which is embedded in an unbounded matrix medium and subjected
to remotely applied strain &}/ which are equal to the yet unknown average strain in the matrix.

Now consider a local matrlx volume V' with surface S’ in the V which surrounds a single coated
inclusion. Its boundary conditions are

ulS') = &jix; 9)

where & is the unknown average matrix strain. The interface conditions are the same as (5) and (6).
Thus, the solution in each part of the reinforcement phases can be written as

&i(X) = T (e, r=1.¢ o

where 7', (x) relates to the single inclusion in an infinite matrix and has phase volume averages T'jy,.
To determlne &y we relate the overall uniform strain &; to the local average strain ¢j; and the average
imperfect interface strain al] and have

81]— ZC,S +8 l/’ r =f,g,m (lla)
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1
?lr] = % JQ (Auﬂ’l, —I— Aujl’l,‘) dQ, (1 lb)

where ¢, are the phase volume fractions, ¢+ ¢y + ¢, = 1, Q is the outer surface of the interface. It is
seen that the integral in (11) are somewhat difficult to evaluate for arbitrary interface. But they can be
calculated for the spherical and cylindrical geometry in the following example. For slightly weakened
interfaces, Qu (1993b) introduced a tensor Hy; to evaluate the Sfj approximately by using the interface
conditions (6) and replacing the stress distribution on Q by its volume average o7 within Q.

e = ceHimog ¢ =+ (12)
where Hjy, is a fourth-order tensor defined by

1

Hiy = —
= 4y,

J (Wik"j”/ + iy + nyning + nj,nink) dQ. (13)
Q

It is noticed that H;, depends on the interface (springer-layer) property and the geometry of the
inclusion. ¢} is related to the ¢7. We find that this approximation cannot be introduced to the case of
the large compliance of the interface, and it give a reasonable estimation only for the very small
compliance of the interface. However, having a close investigation to (11b), one can assume that .9;,- have

the forms
b;j = %,B,-jk/s%, (14)

where By, are the strain concentration factors. Then (10) is averaged over the volume of each phase,
and the results are introduced into (11). With eqn (14) we can find the unknown average matrix strain
N

i

-1
321 = |:ZC’T?jkl + cfngi//(/:| 82/, r=f g m. (15)
-
Since we only consider the state of strain in the matrix in a small volume adjacent to the coated
inclusion, hence it is reasonable that
Ty = iy = 3 (00 + 0adje)- (16)

The approximate strain field for each phase ¢j; can be yielded by substitution of (15) into (10).
A similar procedure can also be applied for the stress boundary conditions (4). In place of (8), we can
write the solution for stress fields in each phase.

Ug‘(x) = D;;‘kl(x)agl’ r=f,gm (17)

where Djy(x) have volume phase average Dji which are referred to as the mechanical stress
concentration factors. In the volume V7’ with surface S’ which embedded a single coated inclusion, the
solution can be assumed to be the form

oy(x) = Wi(xX)ag, r =1, g (18)
The tensor Wj:'/.k,(x) is related to the counterpart in (10) by

er-l-k,(x) = L;'/qu;qsf(x)M;’;k,, r=f,g m (19)
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and according to the same reason in (16) we have
Wi 22 i = 5 (idji + Sudji).- (20)

To determine ¢} we write the overall uniform stress ¢ in term of the local average stress o7,

O-ll Z(’ O'l]O'r” - U’ fga (21)

and use (19) to get the result

-1
m_|:zcl zjkl:| O'/d (22)

Introducing (22) into (18), one obtain the approximate stress fields in each phase oj;(x).

3. Effective mechanical properties

Define the elastic constitutive relations of the composite as

5-ij = L[/‘klékls (233)

&ij = MGk, (24)

where 6;; and g; denote representative volume averages stress and strain tensors, Ly and My, are the
stiffness and compliance tensors of the composite.

To determine L;, note the solution of strain fields in each phase and (1), (11), (15) under the
boundary conditions (3), we have

-1
61] ZC' Lz/ququlgz1l (ZC”LZ‘pq T;qkl) (ZCrTZ']SI’l + CngkIS"> S(S)n' (23b)
From (23a) and (23b) one gets

-1
l/k[ = <Zcr iipq pqvn) <Z(4 okl T C/ngnAl> . (25)

Following the similar procedures under boundary conditions (4) and using (2), (11), (19), (21) and
(22) one can find

0
ojj = E “71]— E oW Uk,ou_aj

_ - p
&j = E Crey; + &jj-
-

The average imperfect interface strains 857 can be assumed to be



1280 Y. Wu et al. | International Journal of Solids and Structures 37 (1999) 12751292
& = ¢ Cijki0p-
The tensor Cjy, is related to the counterparts in (14) by
B,,qu pakl — = Cijui- (26)

Then we have
m (O M
81] - § :C' iipq qulo-kl + CfgCl]lek[’ r _f7 g, m.

From (24) we get

—1

My = (Zc Mlqu quk/ + cp UU) (Zé, lﬂd) ,r=f g m. (27)

Recall that My in (27) in Ly, in (25) are derived under different boundary conditions. The
consistency of the methods which require the relations

M = L, (28)

should be satisfied
Rearrange (27) to get

MUP‘I(ZCI'W;qkl> = (ZC» st Wi+ Cfe uk/) r=f,g m. (29)

Using (19), (26) and (29) leads to

UP‘I(ZC’ pgst rtkl) = (Zc"T;:jkl—i— Cngﬁk/)’ r :f’ &, m. (30)

From (25) and (30) it can see that (28) is satisfied.

It is noted that the above determination of the effective mechanical properties is based on the
assumption that the average imperfect interface strain a; can be explicitly expressed by & or gy
However, due to the fact that the displacement discontinuities at the interfaces are allowed, the strain e’
is generally implicitly involved by & or ¢;7 for the arbitrary inclusion geometry, so that dual procedures
described above may not always yield the physically expected result that My, is the inverse of L. A
detail argument refers to the case of a laminated composite with debonding (Benveniste, 1984).

4. Examples
4.1. Stress fields and effective transverse modulus for the composite with coated spherical inclusions

We now consider the problem that the composite reinforced by coated spherical particles is subjected
to traction boundary conditions. The three distinct phases are assumed to be isotropic. First, consider
the auxiliary problem of a single coated sphere embedded in the infinite matrix subjected to the remote
pure shear tractions. The state of the remote tractions is
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1281
Uxx|r — 00 — 005 ny'r—»oo = —00, O-Zzlr—m)o =0. (31)
Following Christensen and Lo (1979), the displacement fields have the form
u, = U, sin 0 cos 2¢
up = Uy sin 0 cos 0 cos 2¢
ug = Uy sin 0 sin 2¢ (32)

where (r, 0, ¢) are the usual spherical polar coordinates and U,,Uy and Uy are functions of r only. For
each of the three phases, U,,Uy and Uy have the following form, in the inclusion phase,

6v
U/ =Adir— — 43
S I T
f T—%r, 3 0<r<a (33)
U(/) :Alr— 1_2VfA2}’ ’
I gt
Up=-Uj;

in the interphase,

6v 3 5—4v, 1
US8=RBr— g B 3 B g '
r 1r 1—2vg 21 +I‘4 3 1_2Vg}"2 4
—4 2 2 -
Uf=Br— % Bord — S By + 5By asr<b (34)
1-— Vg r r
Uj:—Uog
in the matrix phase,
3 5—4y, 1
U™ =D D 2T m p
r 1r+l"4 3+1—2er2 4
2 2 >
Uy = Dir — D3 + 5Dy rzb (35)
r r
U';::—U’e”

where vy,ve,v, are the Poisson’s ratio of each phase, respectively, and a and b are outer radii of the

inclusion and interphase. The A’s, B’s and D’s are the usual constants to be determined from the stress
and displacement conditions at the two interface. The interface conditions are
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U /(@) = U Aa)
UO/(a) =U(a)
6./(@) = o (@)
7,0(a) = 0,5(a) (36)
Un(b) — U #(b) = ao™(b)
Un(b) — U £b) = Bom(b)
o”(b) = g £(b)
ayy(b) = a5(b)

where o and f are defined in (7). Introducing 4, = A, A» = a*4>, B| = By, B, = b*B,, By = B3/b°,
By = By/b’, D3y = D3/b°, D4y = Dy/b’, ¢ =a/b and the interface imperfect parameters oy = 2au,,/b,
B =2pBu,,/b, and substituting (33)—(35) into (36), we can write the interface conditions in the matrix
form as follows

B
B, A
Egea| = | = Faxa| - (37)
B A
By
where
1 6/ (1 2v,) 38 (5=4n)/[ (1= 20)¢ |
L —(T—dv)?/(1=2v) =2/ 2/
Eyuq =
1 3vgc?/(1—2v) —12/¢5 =2(5— v)/[(l - 2vg)c3]
L —(T+20)/(1=2v) 8/¢5  2(14v,)/[(1=2v)¢
and
1 —6Vf/(1 - 2Vf)
1 —(7—4Vf)/(1 —2vf)
Fao =

Hyl e vy [(1 = 2v7) 1]
welig = (7+ 2vp)ug/ [(1 = 2v7) g

B, Ds
Goys = | _ = Py 5 + Nox1 Dy (38)

4
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where
ot (1 —(T+20)/(1=2vg) 8 2(14vg)/(1—2w)
P T—dn)/(-2y) 2 -2 ’
[ 8tt/tty 201+ Vi) it/ [(1 = 29 )1t ] Fon/ tg
Py = , N= .
_8:81+2 _2(1+Vm)ﬁl/(1_2vm)_2 ﬁl_l
5
B D
Kna=| :L2><2|: _3:|
B, D,
where
. K 2(7 + 5vg) /(1 — 2v,) —40
T =B (B 1) = (7= v = 1)/(1=2v) 53 -2
—24/(1 —2v,)
(5—4ve)(1 = By)/(1 = 2vg) +2(1 — 1)
and
_40:um/:ug _24M;11/[(1 - 2vm):ug]

Lyyr = | 3(4a; + 1)(1 — /31) [20(1(5 — V) +5— 4vm](l — ﬁ])/(l —2vp)
204+ 1)1 =) +2[(1+v)f /(1 =2v,) = 1](1 — o)

Using the condition (31), when r — oo,
2,umD1 =0y, Dl = 00/2,um.

Combined with (37)—(40), the constants can be determined as follows,

_/Il 1 a
- = R2X2N2><1D1 = 0’0/2.Um
_A2 as
[ B, by
Bz 14]1 b2
_ | = EsaFao| - | = 00/2,
B A b3
&, b

1283

(39)

(40)

(41)

(42)



1284 Y. Wu et al. | International Journal of Solids and Structures 37 (1999) 12751292

Dyl _ o g mma| . 2 43)
_ | = Ly o Koxal gy g lax2| - | = 00/ <l
B 2x2 4x4 i M m

where
Raxz = (Gaxa — Paxals) s Kava) E 3l Faso. (44)

All the constants are dependent upon the remote stress gy. We now estimate the average stresses in each
phase. This can be implemented from the integral as follows,

3 n 21 Ry

-/ . 1.2

g.=— - | sin0do d or-dr, [=f g m 45
¥ 4n(Rg—R§)Jo Jo (bJRl Y re “

where

R =0, Rh=a, forl=f
Ri=a, Ry,=b, forl=g¢

Ri=b, Ry=o00, forl=m.

After some length mathematics, we found the stress components in Cartesian coordinates for each phase

oo 21
T T | T 5 =2y az}o 170
TR PRI B ) I
W | T s 2vy) T | T e
6@ =0y
= =
Oy = =0y [ =1, 8 m. (46)
Other stress components are equal to zero.
Note that
Oxx = 00. (47)

From (22) we obtain
ol = (cm+ e Wy + ¢ We) 0. (48)

Let o7, take the place of the traction gy in the auxiliary problem, then the approximate stress fields in
the coated spherical composite can be given by the same procedure as above.
Consider the average imperfect strain sl’j and use the integral (11) we find that

&' = ¢ AU, + 3AUy)/5b = ¢ W60, ¢fp = cr+ ¢
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e = —¢  others = 0. (49)

yy XX

where AU; = U™ — U f (i=r,0) are the displacement jumps at r = b. The effective transverse shear
modulus ur then follows from

-1
I/ = (Cm//lm + Wil + cgWe /g + 2c¢p, Wl)(cm + Wit g Wg) : (50)

4.2. Stress field and effective transverse shear modulus for a coated cylinder model

Let’s consider the composite reinforced by coated cylindrical fibers of a circular cross-section. We
assume that fiber are aligned and distributed in the matrix in a statistically homogeneous manner and
each of its three distinct phases is isotropic.

Consider first the auxiliary problem of a single coated fiber embedded in the infinite matrix. The
composite is subjected to traction boundary conditions. The state of the remote traction is

O-xx|r—>oo = 0y, Uyylr—»oo = —0yp, az:'r—»oo = 0 (51)

We can use the existing solution found by Christensen and Lo (1979). The displacement fields in each
of three phases are

} I=f g m. (52)

boy "\’ r
= —— - — — 2
u, Iy |:a1(17/ 3)(b> +d1b:|cos 0
0<r<a (53)
- bo "\’ r
f_ 2% , . Zlsin 2
uy Iy |:a1(17f+3)(b> +d1b:|s1n 0
in the coating phase,
ba \? r b b .
O 3,
us = 4—'ug|:az(ng - 3)(5> +d25 +c2(ng+ 1); +b2(;> :|cos 20
X a<r<b (54)
bay \° r b b\ | .
uf = 4—'ug|:az(ng+ 3)<E> —dzz - cz(ng — 1); +b2<;) :|s1n 20

in the matrix phase,

m

3
w boo| 7 b b
U = 4—|:25+a3(17m+1);+03(;> :|cos 20
r=b (55)
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and all

ul =0,1

Y. Wu et al. | International Journal of Solids and Structures 37 (1999) 12751292

=f,gm

where a and b are the inner and outer radii of the coating, respectively, ai, dy, a», d>, ¢, by, a3 and ¢3 are
unknown constants to be determined, p; are phase shear moduli, r, 0,z are the usual cylindrical
coordinates and

=1+

2P K I =1,g.m

where 17 is the transverse shear modulus and K7 is the plane strain bulk modulus (see Christensen and

Lo, 1986).

The interface conditions have the same forms as (36) and can also be represented by the matrix forms
as follows. From the first four equations in (36), one can give

E4yxa

where

E4q =

Fyr =

—1 1/c$
0 3/¢t
(g =3)  (wy+ mgny) /<
—Hg (1 —3)
Hi(ng +3) (o mgtty) /<
L —Hg(ny+3)
10
0 1
, where ¢ = a/b.
0
0 0

1/c* 0
4/ -1

[y(ng +1) (= '“g)/c2

g (ny+ 1)]/64

(e = 1) =y = )/

—He (s — 1)]/64

From the last four equations in (36), one can get

(56)

(57)



Y. Wu et al. | International Journal of Solids and Structures 37 (1999) 12751292 1287

ay
2N2x2 + szz[?j } + Vaxa lc)j =0, (58)
d»
where
L 4
Ko = ,
i 1 —1 —1 0
3 Vin 1 My
Ops = | Ml =3( = P1) ;g( o= P1)  Hafng(n = Br) Ig(on —B) |,
(1 — o1 — 1)1/t +1 — o1 — Br))/ 1

N ! U 2 3
2x1 = > 2x2 = >
_l_zﬂl ’7/11_1_4ﬁl _(1+6ﬁ1)

6 -3 ) 1
Voxa =
S T () VT Ty T € 8 VTR TR

where o) =pu,,0/b, f; =p,,/b are the interface imperfect parameters. The constants can be determined

_ @
:| = 2Ry}, Nasi, (59a)
_ o
b2 a
. 4;4F4X{ } (59b)
&) d
d»
ap
as _1 b2
= K2x2Q2><4 (59¢)
d; (&)
d>

where
Roxr = 2(Vaua + UsaK 3),00.4) E 3} Faseo.

We now estimate the average stresses in each phase as previously done. After lengthy mathematics, we
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found, in Cartesian coordinates, in each phase,

Gl = %(dl —3ar?)ag = Wiy, (60a)
- 1 1—c*

O-)égiv = E(dz - 3a2m>00 = WgUOa (60b)
Oy = 00, (60c)
&ﬁ,y = —6i.x, l=f, g, m, others=0. (60d)

Using (22), note that

Oxx = 00 (6])
to obtain
ot = (em + Wy + e W) 0. (62)

Substitute +o0y = +o7, into the auxiliary problem, then the approximate stress field in coated fiber

composition can be given by the same procedure as above.
Consider the average imperfect interface strain Z{J and use the integral (11b), we find that

8o = (AU, — AU)/2b = cuWio0, o= ¢r+ g

ot =t
gyy - Hxx,

others = 0 (63)

where AU; = U — U f(i=r,0) are the displacement jumps at r = b. The effective transverse shear
modulus uy then follows form

1 Cm cr Cg O
2 + = Wrt+ =W+ ciWe ) (em + W+ W) . (64)

4.3. Numerical results and discussion

In order to illustrate the effect of imperfect interface on the coated inclusion composite, we consider
the composite consisting of the SiC inclusions, phase f, a carbon coating, phase g, embedded in
Titanium aluminate matrix, phase m for the spherical and cylindrical models, respectively. The phase
properties are (from Benveniste et al. 1989),

py=172.0 Gpa, vy =0.253, ¢ =04,
i =1434Gpa, v, =02, ¢ =0.01,

U, =37.10 Gpa, v, =0.3, ¢, =0.59.
a/b =0.9918 for the sphere particle, a/b =0.9877 for the fiber.
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Fig. 1. Variation of effective shear modulus with shear bond parameter for spherical model.

Figures 1 and 2 show the effect of bonding on effective shear modulus for the spherical particle and
cylindrical fiber cases, respectively. In one set of plots ¢; = 0 which denotes the perfect normal bond
and imperfect shear bond. In other set of plots «; = f§;/5 which presents the case of imperfect normal
and shear bond. Because the curves for other ratio o;/f; have a similar trend. Therefore, we give only
the typical one. It is clearly seen that the feature of normal bond has a strong and similar effect on
degradation of shear modulus for the two kinds of composites. It can be seen that the py/p,, for oy =0
and f;, =0.01 are 1.66 and 1.55. The numerical results obtained on the approach presented by
Christensen and Lo (1979) for perfect bonding cases are 1.67 and 1.56. Our results agree with those.

2.00

v rrve e rvve s brgvrrv v by vrgrenid

0.00 T T TTT T TTTTI T TTTI LILBLLRLLL T TTTITf T TTT7m]
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B

Fig. 2. Variation of effective shear modulus with shear bond parameter for cylindrical model.
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Fig. 3. Stress distributions along the interface between coating and matrix for the shear loading in XY-plane.

Figures 3 and 4 show the stress distributions along the interface between the interphase and the
matrix for the coated particulate and fiber reinforced composites with different imperfect
parameters, respectively. In the coated particulate composite, as the imperfect parameters o; and f,
increase, the amplitude of the stresses o, and gy increases, but g,y decreases at the interface. This
implies that the variation of the normal displacement jump becomes large and that variation of the
tangential displacement is lower. Since the normal interface displacement jump waves along the
interface, a negative jump larger than the interphase thickness means that particles and matrix
interpenetrate which is not permissible for physical reasons. It is to be expected that normal
imperfect parameters could be different in tension and compression to overcome this paradox.
However, in the coated cylinder composite, the amplitude of the o, and g,y all decrease as the
imperfect parameters increase, although that of o,9 increases. This means the variations of the
normal and tangential interface displacement jump decrease with the increase of the imperfect
parameters and the present model may give a reasonable estimation for the coated fiber composites
with imperfect interface.

Figures 5 and 6 show the effect of the interphase properties on the effective shear modulus for the two
cases on some imperfect conditions, respectively. It is seen that the two models have a similar effect on
the shear modulus of the composites and only the very small interphase properties have a strong
influence on the behavior of the composite. This feature is similar to the characteristic of the composites
determined with perfect bonding (Wu and Dong, 1995).
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Fig. 4. Stress distributions along the interface between coating and matrix for the shear loading in XY-plane.
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Fig. 5. Variation of effective shear modulus with the interface shear modulus for spherical model.
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Fig. 6. Variation of effective shear modulus with the interface shear modulus for cylindrical model.
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